Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 327: 138529, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36990360

RESUMO

Antimony (Sb) has raised widespread concern because of its negative effects on ecology and human health. The extensive use of antimony-containing products and corresponding Sb mining activities have discharged considerable amounts of anthropogenic Sb into the environment, especially the water environment. Adsorption has been employed as the most effective strategy for Sb sequestration from water; thus, a comprehensive understanding of the adsorption performance, behavior and mechanisms of adsorbents benefits to develop the optimal adsorbent to remove Sb and even drive its practical application. This review presents a holistic analysis of adsorbent species with the ability to remove Sb from water, with a special emphasis on the Sb adsorption behavior of various adsorption materials and their Sb-adsorbent interaction mechanisms. Herein, we summarize research results based on the characteristic properties and Sb affinities of reported adsorbents. Various interactions, including electrostatic interactions, ion exchange, complexation and redox reactions, are fully reviewed. Relevant environmental factors and adsorption models are also discussed to clarify the relevant adsorption processes. Overall, iron-based adsorbents and corresponding composite adsorbents show relatively excellent Sb adsorption performance and have received widespread attention. Sb removal mainly depends on chemical properties of the adsorbent and Sb itself, and complexation is the main driving force for Sb removal, assisted by electrostatic attraction. The future directions of Sb removal by adsorption focus on the shortcomings of current adsorbents; more attention should be given to the practicability of adsorbents and their disposal after use. This review contributes to the development of effective adsorbents for removing Sb and provides an understanding of Sb interfacial processes during Sb transport and the fate of Sb in the water environment.


Assuntos
Antimônio , Poluentes Químicos da Água , Humanos , Antimônio/análise , Adsorção , Poluentes Químicos da Água/análise , Água , Ferro/análise
2.
Chemosphere ; 285: 131525, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34265703

RESUMO

Arsenic (As) is a problematic pollutant that can cause cancer and other chronic diseases due to its potential toxicity. Iron (oxyhydr)oxides can readily sorb As and play important roles in the geochemical cycle of As. Attention has mainly been given to the affinity and mechanism of As sorption by synthetic pure iron (oxyhydr)oxides, and little is known about the relationship between As behavior and multicomponent secondary iron minerals (SIMs) naturally formed in acid mine drainage (AMD). To investigate this relationship, we performed sorption kinetics, isotherm and competitive sorption experiments to investigate As(V) sorption behaviors on naturally formed SIMs harvested from different runoff zones of an abandoned coal mine. Several spectroscopic analyses were used to evaluate the structural and component changes and phase transformation. Three environmental SIMs formed at nascent (n-SIM), transient (t-SIM) and mature (m-SIM) stages were determined to be similar in the element components of Fe, S and O but different in structure. As(V) sorption behaviors on these environmental SIMs followed a pseudo-second-order kinetic model, and the sorption extent followed the sequence of n-SIM > t-SIM > m-SIM. As(V) sorption is not significantly influenced by Na+/Ca2+ concentration or ionic strength except for that of PO43-, and it slightly decreases as the Cr(Ⅲ) concentration increases but increases with increasing Sb(Ⅲ)/(V) concentration. The results of spectral analyses indicate that As(V) immobilization mainly depends on exchange with SO42- and surface complexation, along with the phase transformation of schwertmannite/jarosite to goethite and other phases. These findings are helpful for better understanding the geochemical behaviors of As(V) associated with environmental SIMs.


Assuntos
Arsênio , Compostos de Ferro , Adsorção , Arseniatos , Compostos Férricos , Ferro , Minerais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...